\qquad

VERTEX FORM of a Quadratic Equation * Keep sign on K, Switch sign on h for the vertex	- Vertex Form of a Quadratic Equation: \qquad - \qquad (h,k) is the vertex; \qquad $x=h$ is the axis of symmetry	
	Directions: Give the axis of symmetry and vertex of each equation.	
	1. $y=(x+4)^{2}-2$ h K Axis of Symmetry: \qquad $x=-4$ Vertex: $(-4,-2)$ \qquad	2. $y=-(x-3)^{2}+0$ Axis of Symmetry: \qquad $x=3$ Vertex: $(3,0)$
	3. $y=(x-5)^{2}-4$ Axis of Symmetry: \qquad $x=5$ Vertex: \qquad $(5,-4)$	4. $y=-2 x^{2}+3$ Axis of Symmetry: \qquad $x=0$ Vertex: $(0,3)$ \qquad

Practice:

1. Describe the transformation that occurred compared to the parent function $y=x^{2}$.
a) $f(x)=-x^{2}+10$
b) $g(x)=(x+4)^{2}+9$
c) $y=-(x-22)^{2}$
d) $h(x)=(-x+5)^{2}$
e) $y=(x-6)^{2}+2$
2. Write a quadratic equation whose graph is shifted down 7 units. \qquad
3. Write a quadratic equation whose graph is shifted left 2 units. \qquad
4. Write two quadratic equations that are reflections of each other. \qquad
5. Given $y=x^{2}-1$, write an equation whose graph is reflected and shifted up 5 units. \qquad
6. What is the vertex of the function $y=(x-6)^{2}-8$? \qquad
